Lecture 3

Processes in the OS

Introduction

* A process is a program in execution. A process will need certain
resources—such as CPU time, memory, files, and I/O devices— to
accomplish its task. These resources are typically allocated to the
process while it is executing.

* A process is the unit of work in most systems. Systems consist of a
collection of processes: operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

The process

* The status of the current activity of a process is represented
by the value of the program counter and the contents of the
processor’s registers. The memory layout of a process is

typically divided into multiple sections, and is shown in
Figure 3.1.

These sections include:
e Text section— the executable code

e Data section—global variables

* Heap section—memory that is dynamically allocated during
program run time

e Stack section— temporary data storage when invoking

functions (such as function parameters, return addresses, and
local variables)

max
stack
heap
data
text
0

Figure 3.1 Layout of a process in memory.

* We emphasize that a program by itself is not a process. A program is a
passive entity, such as a file containing a list of instructions stored on
disk (often called an executable fil). In contrast, a process is an active
entity, with a program counter specifying the next instruction to
execute and a set of associated resources.

Process State

* As a process executes, it changes state. The state of a process is
defined in part by the current activity of that process. A process may
be in one of the following states:

* New. The process is being created.
* Running. Instructions are being executed.

* Waiting. The process is waiting for some event to occur (such as an
/0 completion or reception of a signal).

* Ready. The process is waiting to be assigned to a processor.
* Terminated. The process has finished execution.

* These names are arbitrary, and they vary
across operating systems. The states that
they represent are found on all systems,
however. Certain operating systems also
more finely delineate process states. It is
important to realize that only one process
can be running on any processor core at
any instant. Many processes may be ready
and waiting, however. The state diagram
corresponding to these states is presented
in Figure 3.2.

admitted interrupt exi

terminated

scheduler dispatch

/0 or event compltion /0 or event wat

Figure 3.2 Diagram of process state.

Process Control Block

* Process state. The state may be new, ready, running, waiting, halted, and so on.

e Program counter. The counter indicates the address of the next instruction to be executed for this
process.

CPU registers. The registers vary in number and type, depending on the computer architecture. They
include accumulators, index registers, stack pointers, and general-purpose registers, plus any
condition-code information. Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly afterward when it is
rescheduled to run.

CPU-scheduling information. This information includes a process priority, pointers to scheduling
qgueues, and any other scheduling parameters. (Chapter 5 describes process scheduling.)

Memory-management information. This information may include such items as the value of the base
and limit registers and the page tables, or the segment tables, depending on the memory system used
by the operating system

Accounting information. This information includes the amount of CPU and real time used, time limits,
account numbers, job or process numbers, and so on.

1/0 status information. This information includes the list of I/O devices allocated to the process, a list of
open files, and so on.

process state

process number

program counter

registers

memory limits

list of open files

Figure 3.3

Process control block (PCB).

Process Scheduling

* The objective of multiprogramming is to have some process running
at all times so as to maximize CPU utilization. The objective of time
sharing is to switch a CPU core among processes so frequently that
users can interact with each program while it is running. To meet
these objectives, the process scheduler selects an available process
(possibly from a set of several available processes) for program
execution on a core. Each CPU core can run one process at a time.

Scheduling Queues

* As processes enter the system, they are put into a ready queue,
where they are ready and waiting to execute on a CPU’s core This
qgueue is generally stored as a linked list; a ready-queue header
contains pointers to the first PCB in the list, and each PCB includes a
pointer field that points to the next PCB in the ready queue.

Queue

* Once the process is allocated a CPU core and is executing, one of several
events could occur:

* The process could issue an 1/O request and then be placed in an I/O wait
queue.

e The process could create a new child process and then be placed in a wait
gueue while it awaits the child’s termination.

e The process could be removed forcibly from the core, as a result of an
interrupt or having its time slice expire and be put back in the ready queue.

ready queue

)

» CPU)

/O =
N

child
terminates
interrupt
occurs

/O wait queue [/Orequest
time slice
expired
child .
termination crea:ziecgld
wait queue P
interrupt wait for an
wait queue interrupt

Figure 3.5 Queueing-diagram representation of process scheduling.

CPU Scheduling

* A process migrates among the ready queue and various wait queues

throughout its lifetime. The role of the CPU schedu
among the processes that are in the ready queue
core to one of them. The CPU scheduler must se

er is to select from
and allocate a CPU

ect a new process

for the CPU frequently. An 1I/O-bound process may execute for only a
few milliseconds before waiting for an 1/O request. Although a CPU-
bound process will require a CPU core for longer durations, the
scheduler is unlikely to grant the core to a process for an extended
period. Instead, it is likely designed to forcibly remove the CPU from a
process and schedule another process to run. Therefore, the CPU
scheduler executes at least once every 100 milliseconds, although

typically much more frequently

Swapping

 Some operating systems have an intermediate form of scheduling,
known as swapping, whose key idea is that sometimes it can be
advantageous to remove a process from memory (and from active
contention for the CPU) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into
memory, and its execution can be continued where it left off. This
scheme is known as swapping because a process can be “swapped
out” from memory to disk, where its current status is saved, and later
“swapped in” from disk back to memory, where its status is restored.
Swapping is typically only necessary when memory has been
overcommitted and must be freed up.

Context Switch

* interrupts cause the operating system to change a CPU core from its
current task and to run a kernel routine. Such operations happen
frequently on general-purpose systems. When an interrupt occurs,
the system needs to save the current context of the process running
on the CPU core so that it can restore that context when its
processing is done, essentially suspending the process and then
resuming it.

e Switching the CPU core to another process requires
performing a state save of the current process and a
state restore of a different process. This task is known
as a context switch and is illustrated in Figure 3.6.

process P, operating system process P,

interrupt or system call
executing ‘l
v

A P
A save state into PCB,

> idle

reload state from PCB, 1
-idle interrupt or system call

—

save state into PCB;

executing

N

> idle

) reload state from PCB,)
executing :u’x

Figure 3.6 Diagram showing context switch from process to process.

Operations on Processes

* The processes in most systems can execute concurrently, and they
may be created and deleted dynamically. Thus, these systems must
provide a mechanism for process creation and termination

Process Creation

* During the course of execution, a process may create several new
processes. As mentioned earlier, the creating process is called a
parent process, and the new processes are called the children of that
process. Each of these new processes may in turn create other
processes, forming a tree of processes

* Most operating systems (including UNIX, Linux, and Windows)
identify processes according to a unique process identifier (or pid),
which is typically an integer number. The pid provides a unique value
for each process in the system, and it can be used as an index to
access various attributes of a process within the kernel.

systemd
pid=1

sshd

pid = 3028

Figure 3.7 A tree of processes on a typical Linux system.

* On UNIX and Linux systems, we can obtain a listing of processes by
using the ps command. For example, the command

*ps —el

* In general, when a process creates a child process, that child process
will need certain resources (CPU time, memory, files, 1/O devices) to
accomplish its task. A child process may be able to obtain its
resources directly from the operating system, or it may be
constrained to a subset of the resources of the parent process.

* When a process creates a new process, two possibilities for execution
exist:

1. The parent continues to execute concurrently with its children.
2. The parent waits until some or all of its children have terminated.
 There are also two address-space possibilities for the new process:

1. The child process is a duplicate of the parent process (it has the
same program and data as the parent).

2. The child process has a new program loaded into it.

* To illustrate these differences, let’s first consider the UNIX operatinﬁ system. In UNIX, as

we’ve seen, each process is identified by its process identifier, which is a unique integer.
A newfprocess is created by the fork () system call. The new process consists of a
copy of the address space of the original process. This mechanism allows the parent
process to communicate easily with its child process. Both processes (the parent and the
child) continue execution at the instruction after the fork (), with one difference: the
return code for the fork(& is zero for the new (child) process, whereas the (nonzero)
process identifier of the child is returned to the parent. After a fork() system call, one of
the two processes typically uses the exec () system call to replace the process’s
memory space with a new program. The exec() system call loads a binary file into
memory (destroying the memory image of the program containing the exec() system call)
and starts its execution. In this manner, the two processes are able to communicate and
then go their separate ways. The parent can then create more children; or, if it has
nothing else to do while the child runs, it can issue a wait() system call to move itself off
the ready queue until the termination of the child. Because the call to exec () overlays
the process’s address space with a new program, exec() does not return control unless an
error occurs.

process creation in Windows

* As an alternative example, we next consider process creation in
Windows. Processes are created in the Windows APl using the
CreateProcess () function, which is similar to fork () in that
a parent creates a new child process. However, whereas fork() has the
child process inheriting the address space of its parent,
CreateProcess () requires loading a specified program into the
address space of the child process at process creation. Furthermore,
whereas fork() is passed no parameters, CreateProcess ()
expects no fewer than ten parameters.

Process Termination

* A process terminates when it finishes executing its final statement and asks
the operating system to delete it by using the exit() system call. At that
point, the process may return a status value (typically an integer) to its
waiting parent process (via the wait() system callg. All the resources of the
Brocess —including physical and virtual memor?;, open files, and 1/0O

uffers—are deallocated and reclaimed by the operating system.
Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for
example, TerminateProcess() in Windows). Usually, such a system call can
be invoked only by the parent of the process that is to be terminated.
Otherwise, a user— or a misbehaving application—could arbitrarily Kkill
another user’s Frocesses. Note that a parent needs to know the identities
of its children if it is to terminate them. Thus, when one process creates a
new process, the identity of the newly created process is passed to the
parent

Zombie process

* When a process terminates, its resources are deallocated by the
operating system. However, its entry in the process table must remain
there until the parent calls wait(), because the process table contains
the process’s exit status. A process that has terminated, but whose
parent has not yet called wait(), is known as a zombie process

Processes in Android

* Foreground Erocess_—T.he current process visible on the screen,
representing the application the user is currently interacting with

* Visible process—A process that is not directly visible on the foreground
but that is performing an activity that the foreground process is referring to

#that is, adprocess performing an activity whose status is displayed on the
oreground process)

* Service process—A process that is similar to a background process but is

perfpr)ming an activity that is apparent to the user (such as streaming
music

* Background process—A process that may be performing an activity but is
not apparent to the user.

. Emﬁty process—A process that holds no active components associated
with any application

* Processes executing concurrently in the operating system may be
either independent processes or cooperating processes. A process is
independent if it does not share data with any other processes
executing in the system. A process is cooperating if it can affect or be
affected by the other processes executing in the system.

There are several reasons for providing an environment that allows process
cooperation:

e [nformation sharing. Since several applications may be interested in the
same piece of information (for instance, copying and pasting), we must
provide an environment to allow concurrent access to such information.

e Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer has
multiple processing cores.

e Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads

interprocess communication (IPC)

process A process A

* Cooperating processes require an interprocess communication
(IPC) mechanism that will allow them to exchange data— that is,
send data to and receive data from each other. There are two process B
fundamental models of interprocess communication: shared
memory and message passing. In the shared-memory model, a
region of memory that is shared by the cooperating processes is
established. Processes can then exchange information by reading

¥

shared memory -

process B

and writing data to the shared region. In the message-passing message queue
model, communication takes place by means of messages > mo[m;[m,[m;] ... [m, |«
exchanged between the cooperating processes. kernel N I

erne

(a) (b)

Figure 3.11 Communications models. (a) Shared memory. (b) Message passing.

shared memory model

* Interprocess communication wusing shared memory requires
communicating processes to establish a region of shared memory.
Typically, a shared-memory region resides in the address space of the
process creating the shared-memory segment. Other processes that
wish to communicate using this shared-memory segment must attach
it to their address space. Recall that, normally, the operating system
tries to prevent one process from accessing another process’s
memory.

* Message passing provides a mechanism to allow processes to
communicate and to synchronize their actions without sharing the
same address space. It is particularly useful in a distributed
environment, where the communicating processes may reside on
different computers connected by a network. For example, an
Internet chat program could be desighed so that chat participants
communicate with one another by exchanging messages

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In
this scheme, the send() and receive() primitives are defined as:

e send(P, message)—Send a message to process P.
e receive(Q, message)—Receive a message from process Q.
A communication link in this scheme has the following properties:

e A link is established automatically between every pair of processes
that want to communicate. The processes need to know only each
other’s identity to communicate.

* A link is associated with exactly two processes.
e Between each pair of processes, there exists exactly one link.

Thank you for your attention!

	Слайд 1, Lecture 3
	Слайд 2, Introduction
	Слайд 3, The process
	Слайд 4
	Слайд 5, Process State
	Слайд 6
	Слайд 7, Process Control Block
	Слайд 8, Process Scheduling
	Слайд 9, Scheduling Queues
	Слайд 10, Queue
	Слайд 11, CPU Scheduling
	Слайд 12, Swapping
	Слайд 13, Context Switch
	Слайд 14
	Слайд 15, Operations on Processes
	Слайд 16, Process Creation
	Слайд 17
	Слайд 18
	Слайд 19
	Слайд 20
	Слайд 21
	Слайд 22
	Слайд 23, process creation in Windows
	Слайд 24, Process Termination
	Слайд 25, Zombie process
	Слайд 26, Processes in Android
	Слайд 27
	Слайд 28
	Слайд 29, interprocess communication (IPC)
	Слайд 30, shared memory model
	Слайд 31
	Слайд 32
	Слайд 33, Thank you for your attention!

